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TURAN'S PURE POWER SUM PROBLEM 

A. Y. CHEER AND D. A. GOLDSTON 

ABSTRACT. Let 1 = z1 > IZ21 > ... > IZnI be n complex numbers, and 
consider the power sums s, = z1" + z2' + *.. + Zn, 1 ?< v < n. Put Rn = 
minmaxl<v<n jsj, where the minimum is over all possible complex numbers 
satisfying the above. Turn conjectured that Rn > A, for A some positive 
absolute constant. Atkinson proved this conjecture by showing Rn > 1/6. It 
is now known that 1/2 < Rn < 1 for n > 2. Determining whether Rn -s 1 or 
approaches some other limiting value as n -- oo is still an open problem. Our 
calculations show that an upper bound for Rn decreases for n < 55, suggesting 
that Rn decreases to a limiting value less than 0.7 as n -- oo. 

1. INTRODUCTION 

Let z1, Z2, . , Zn be complex numbers and let 

n 

( 1 ) v E k 

k=1 

be the vth (pure) power sum of these n complex numbers. Turan initiated the 
study of the problem of determining how small Is, can be for all v in some range 
and Zk satisfying various conditions. Depending on the conditions imposed on the 
range of values of v and Zk, and also on the norm used in obtaining the lower 
bound, many interesting problems arise, see [8, Chapters 1-4]. We are concerned 
with the problem of determining how small Isj can be for all 1 < v < m and for 
any configuration of complex numbers satisfying 

(2) 1 = zi > |Z21 > .. ' ' > IZn I 

This condition on the Zk'S is not particularly restrictive since many more general 
problems can quickly be reduced to this case. We let 

(3) Mn(m) = mnaxls,1l, Rn(m)= mn Mn(m), 

i.e., Rn (M) is the min-max of the absolute value of the first m power sums of n 
complex numbers satisfying (2). Since the maximum is nondecreasing with m, we 
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see that R, n(m) is nondecreasing in m. Taking Zk = e(k/n), for 1 < k < n, where 
e(u) = e 2 i, we see that s, = 0 for 1 < K < n- 1. Therefore, 

Rn(m) = 0 for l<m <n-1. 

The first case of interest is thus when m = n, the min-max of n complex numbers 
over the first n power sums. For this case, denote 

(4) Mn = Mn (n) v Rn = Rn (n). 

Turn conjectured in 1938 that Rn is bounded below by an absolute constant for 
all n. This conjecture was proved by Atkinson [1] in 1961, where he obtained 

(5) Rn > 1/6. 

Atkinson subsequently improved his result to Rn > 1/3 and also obtained a some- 
what larger lower bound for some n [2]. Very recently, Biro [3] found an elegant 
elementary argument which shows 

(6) Rn > 1/2. 

On the other hand, Komlos, Sark6zy, and Szemeredi [4] showed that 

(7) Rn < 1- 

for all sufficiently large n. In view of these results the main question to be examined 
is whether Rn -* 1 as n -* oc or whether it decreases to some limiting value. Both 
possibilities have been suggested, and it appears Turan himself has at various times 
conjectured both possibilities [8, p. 30], [9, p. XVII]. The only known values are 
RI = 1, R2 = 0.87403..., and R3 = 0.8247830... . Here R1 = 1 is trivial, and 

R2 = 3 - may be obtained by a relatively easy Lagrange multiplier argument. 
The value (R2)2 satisfies the equation 

x2 -6x + 4 = 0. 

Determination of R3 is much harder. Lawrynowicz [6] determined R3 algebraically 
in 1960, and obtained the numerical value given above in 1967 [7]. The value (R3)2 
satisfies the equation1 

x 15-81X14 + 2613x13 - 43629x12 + 417429x1 - 2450985x10 + 9516137x9 

- 26203659x8 + 53016480x7 - 83714418X6 + 112601340x5 - 140002992x4 

+ 156204288x3 - 12436156892 + 55427328x - 10077696 = 0. 

In this paper we report on some computations which extend our knowledge of 
Rn and suggest that Rn decreases to a limiting value. Our results are summarized 
in the following theorem. 

1Lawrynowicz determined (R3)2 in terms of a different algebraic number which satisfied an 
equation of degree 15. The equation above was obtained for us by David Bailey, who used the 
Ferguson-Forcade algorithm and his multiprecision arithmetic package for finding integer relations 
between numbers. 
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TABLE 1 

n Mn n Mn 

2 0.87403204889764214159 27 0.71351379274002663079 
3 0.82478303091462249657 28 0.71280297643602584513 
4 0.79787183891219785566 29 0.71213492854485684518 
5 0.78068751175852318911 30 0.71150571445562842882 
6 0.76866240212865063009 31 0.71091187832481901227 
7 0.75972275127528535640 32 0.71035037153531655407 
8 0.75278476350214275366 33 0.70981849370598932067 
9 0.74722423731338641938 34 0.70931384374342863335 
10 0.74265504914476718905 35 0.70883427898651897355 
11 0.73882487313790486797 36 0.70837788091679418294 
12 0.73556147974443498507 37 0.70794292622936772579 
13 0.73274307211717818350 38 0.70752786230650853148 
14 0.73028094927147070166 39 0.70713128632741405830 
15 0.72810889170059241298 40 0.70675192739708693051 
16 0.72617640456896152304 41 0.70638863119452338965 
17 0.72444427147342536314 42 0.70604034673315181320 
18 0.72288154379177815772 43 0.70570611490021873219 
19 0.72146345068685877134 44 0.70538505850083375768 
20 0.72016991610628663886 45 0.70507637357986472730 
21 0.71898448586498316988 46 0.70477932183327719645 
22 0.71789353784931532652 47 0.70449322395173041892 
23 0.71688569151654277288 48 0.70421745376474166007 
24 0.71595136015246079880 49 0.70395143307465529630 
25 0.71508240701664073135 50 0.70369462708689897930 
26 0.71427187818188997713 55 0.70253266322361406713 

Theorem. There exist configurations of points satisfying equation (2) with Mn 
given in Table 1. These numbers are accurate to 20 digits. 

2. THE COMPUTATIONAL SCHEME 

Our method for computing Rn is due to Lawrynowicz [6]. He proved that among 
the extremal configurations of points Zk which takes on the value Rn, there is always 
a configuration with 

(8) |S11 = IS21 = SnI. 

This is possibly the only type of configuration where Rn is attained, but this is 
not known. Consequently, we can formulate the computing of-Rn as a Lagrange 
multiplier problem. To compute Rn, let z1 1, Zk = Xk + iYk for 2 < k < n, and 

F(X2, X3i ... v Xn) Y2i .. ., Yni>j, A2i .. An-l1) 

(9) n-1 

()= S12 -E Ak (IS 12- _Sk+ 12. 
k=1 



1352 A. Y. CHEER AND D. A. GOLDSTON 

Then the equation Rn = Isil is satisfied at a critical point of F. To obtain this 
critical point, we need to solve the system of 3n - 3 equations 

OF OF OF 
(10) = O. =, O =0, for j =1,n2,.. ,rn-1. 

OXj+I OYj+ >OAj 

Each equation is a polynomial in 3n - 3 variables of degree < 2n in each variable. 
For example, when n = 2 we have z1 = 1, Z2 = X2 + iY2, jS 12 = (1 + X2)2 + Y2, 

Is212 = (1 + X22 -Y2)+ + 4x22y22, and our system is 

(Ila) OF 
2(1+X2) -Al(2(1+X2)-4X2(l+X22 -Y2) 2-8X2Y2) = 0, 

0X2 

(lIb) OF = 2y2-AI (2y2 +24Y2(l + X2 -22) 2-8X2Y2) = 0, 

OF2 
(lic) OA = (1 + X2)2 + y22 - (1 + X22 - y22)2 - 4X2 2Y22 0. 

This system may be solved by hand; equations (Ila) and (lib) imply 1 + 2X2 = 

X22 + Y2 2. From equation (1lc) we get x2 = (1 ? v)/4, andY2 =V/X2. The 
value Y2 = 1 + V' is outside the unit circle. Therefore the value for R2 is 3 - 

which is obtained when X2 = (1 - v)/4, and Y2 = ?V/3X2. 

This example illustrates one of the procedures we use to compute Rn. To find the 
critical points of (10), Newton's method is used. At each critical point we compute 
Is I; the smallest such value is Rn. As will be described below, we cannot actually 
carry this procedure out completely. What we actually compute is a configuration 
which is likely to give the value Rn, and this configuration of points, independent 
of the computational scheme, can be checked to give a small value for Mn, and thus 
provides a rigorously proven upper bound for Rn. 

3. THE COMPUTATION 

All of our computations make use of Mathematica. The system of equations (10) 
is solved numerically using a Newton iterative scheme which converges quadratically 
to the solution that is closest to the given initial guess. To obtain all solutions of (10) 
with Mn < 1, random initial guesses are used in Newton's method. The program is 
run with thousands of different random initial guesses and continued until no further 
new critical points are obtained in over several thousand runs. For n = 3, only two 
critical points are found, one of which gives Lawrynowicz's solution, and the other 
is outside the unit circle with the value 1.374.... Proceeding in this fashion, we 
compute the critical points for n = 4, 5, 6. The resulting smallest values for Mn at 
the critical points are listed in Table 2. By the time n = 6, 56 critical points with 
Mn < 1 and 125 critical points with Mn < 1.45 are found. This procedure does 
not ensure that the values in Table 2 are a complete list of all critical points. At 
n = 7, the scheme of using random initial guesses in Newton's algorithm for solving 
(10) is infeasible for finding Rn. First, the Newton algorithm will only converge 
infrequently, and second, there are large numbers of critical points. This algorithm, 
for n = 7, took several months of CPU time before yielding the value given in Table 
1. 
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TABLE 2 
Values of Mn < 1 at critical points (not all 56 values found for n = 6 shown) 

n = 3 n = 4 n = 5 n = 6 

0.8247830309 0.7978718389 0.7806875117 0.7686624021 
0.8389236336 0.8337671859 0.8111179657 
0.8762366068 0.8690990094 0.8285874602 
0.9050025366 0.8712303154 0.8393034012 
0.9074678426 0.8727150203 0.8432191421 
0.9504184932 0.8825304010 0.8483174001 
0.9577375152 0.8829360128 0.8503894070 
0.9746757164 0.8829360128 0.8537885153 
0.9885588908 0.9069016543 0.8556601896 

0.9333716319 0.8613214008 
0.9413655298 0.8737623150 
0.9443800869 0.8740381632 
0.9550142456 0.8894480590 
0.9677037216 0.8958343035 
0.9828023416 0.8958688134 
0.9889082339 0.8972435100 
0.9922111204 0.9178211517 

0.9202763035 

0.9996198736 
0.9996426733 
0.9998003871 
0.9998070146 

We can draw two conclusions from these calculations. First, because of the small 
number of critical points with M4 < 1, it may be possible but very laborious to 
prove that the upper bound for R4 in Table 1 is actually equal to R4. Secondly, 
because the next smallest value of Mn found for n = 4,5,6 is considerably larger 
than the smallest value, it is very likely that the numbers in Table 1 are the correct 
values for R4, R5, and R6. 

To go beyond n = 6 we use information obtained from our extremal configura- 
tions for n = 3,4,5 and 6. These are shown in Figures la and lb. The power sums 
display a very regular pattern and they lie on a circle as required by equation (8). 
In every case we find that they move from si to Sn in order, clockwise, starting 
from the top position. Further, as n increases the points shift in a regular pattern. 
By computing difference tables we obtained a guess for the case n = 7. That is, 
we obtain Sk, 1 < k < 7. One can then obtain the z's from the s's by solving the 
following equations: 

n n 

(12) P(Z) = fl(Z-Zk)= ZakZn-k, z1= 1 ao= 
k=1 k=O 
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0.5 ~ ~ 0 0 .0 

0-0.5 -~~2 0.0 .0 5 

(13) ~ 0.50. 0 

-0.5 10 k2 k3 Sk SkS . 
. ...k 

S2 Sk S2 Sk Sk ... 

The ak's are computed by (13) using the s's determined by our difference procedure. 
From (12), p(z) is obtained. Newton's method is then used to find the roots Zk Of 
p(z). These Zk 's are used as the initial starting guess for the Newton method used 
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. . . . . . . . . . . . . . . . . .1 . . . . . . . . . - . . . . . . . . 

-V1 ~ ~~-0. 005 5 -0.5 . 05 1] 

_ 
. . . . . . . . . . . . -- . . . . . . . . . . . . . . .. ...._ -0.5 0.5 . L -0.5 0.5 

FIGURE lb. Extremal configuration of Sk'S for n = 3,4,5,6 

to solve (10). In practice, we found that Newton's method with this initial guess 
converged immediately to the answer. This procedure was used to compute Table 
1 up to n = 36. At this point, the Newton method used to obtain the z's from the 
s's in (12) and (13) takes a considerable amount of CPU time. Instead, since the z 
configuration is now very regular, we use an interpolation routine to guess the new 
z's from our previous results directly, bypassing equations (12) and (13). By this 
point it is also possible to obtain at once guesses for the Zk's not just for the next 
n, but for the next five n with sufficient accuracy. These points are used as initial 
guesses in the Newton algorithm to solve (10). Using this procedure we compute 
up to M50. 

When we compute the power sums directly from our guess of Zk'S, without 
first solving (10), we obtain slightly higher values for Mn. In particular, using 
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the configurations for n < 50 we obtain R51 < 0.70344665, R52 < 0.7032078, 
R53 < 0.702982, R54 < 0.70281, and R55 < 0.702871. In comparison, for the case 
of n = 55, if the configuation obtained above is used as the initial guess to Newton's 
algorithm to solve (10) the value R55 < 0.702532... in Table 1 is obtained. The 
first 50 configurations give guesses for the Zk' with Mn < 1 for n < 62. 

4. CONCLUSIONS 

From our calculations, it is likely that Rn decreases to a limiting value. In Figure 
2 we display some of the extremal solutions found by our calculations. The extremal 
configuration of z's are converging to a limiting configuration. On the other hand, 
the distribution of the power sums has not developed sufficiently to predict the 
ultimate pattern it will take. 

F 2........ Extrem l c .....o...d 
... 

-0.5 0.5 1 - -0.5 0.51 

\ ~-0.5 /\-0.5. / 

/ ~~0.5 *\/0.5X \ 

FIGURE 2a. Extremal configuration of Zk's and Sk'S for n =15, 30 
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I. 0 \ 
-0.5 0.5 ; - -0.5 0...5~ 

~~~~~. . . . . . . . .. . . . . . . . . . . _ 

-0.5 . 0.5 1-0.5 0.5 . 1 

FIGURE 2b. Extremal configuration of Zk 's and Sk 'S for n =45, 55 
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